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SUMMARY

The Boussinesq equation is a challenging problem both analytically and numerically. Owing to the complex
dynamic development of small scales and the rapid loss of solution regularity, the Boussinesq equation
pushes any numerical strategy to the limit. With uniform meshes, the amount of computational time is too
large to enable us to obtain useful numerical approximations. Therefore, developing effective and robust
moving mesh methods for these problems becomes necessary. In this work, we develop an efficient moving
mesh algorithm for solving the two-dimensional Boussinesq equation. Our moving mesh algorithm is an
extension of Tang and Tang (SIAM J. Numer. Anal. 2003; 41:487–515) for hyperbolic conservation laws
and Zhang and Tang (Commun. Pure Appl. Anal. 2002; 1:57–73) for convection-dominated equations.
Several numerical fluxes (Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
Introduction (2nd edn). Springer: Berlin, 1999; WASCOM 99”: 10th Conference on Waves and Stability in
Continuous Media, Porto Ercole, Italy, 1999; 257–264; High-order Methods for Computational Physics.
Springer: Berlin, 1999; 439–582; J. Sci. Comput. 1990; 5:127–149; SIAM J. Numer. Anal. 2003; 41:487–
515; Commun. Pure Appl. Anal. 2002; 1:57–73) are also discussed. Numerical results demonstrate the
advantage of our moving mesh method in resolving the small structures. Copyright q 2009 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

A common feature of mathematical models [1–6] in physics, astrophysics, mechanics, as well as in
most engineering disciplines, is the appearance of systems of partial differential equations (PDEs).
The computational difficulties of the problem appear when there exist very rapid variations in the
solution. The required resolution may be obtained by either increasing the number of grid points or
using adaptive mesh methods. This paper aims at using adaptive mesh methods for solving PDEs.
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1162 L. WAN-LUNG AND Z. TAN

If the solutions of the PDEs are smooth, we can solve the PDEs by using the uniform mesh.
However, for some problems there exist very large variations in the solution, e.g. in fluid dynamics,
combustion and heat transfer. The resolution of these problems requires a large number of grid
points over a small portion of the physical domain to resolve the large solution variations. The
use of a large number of uniform grids becomes computationally wasteful, since most of the grid
points are not needed. The choice of a non-uniform mesh cannot only retain the accuracy but
also improve the efficiency of an existing method by concentrating the mesh points only in the
regions of large variations in the solution. Adaptive mesh methods are also used for problems
whose solutions are singular.

The adaptive mesh methods and techniques for their applications have been developed for more
than 20 years. One of the reasons is that the adaptive mesh methods can increase the accuracy of
the numerical approximations and decrease the computational cost.

In general there are three types of grid adaptation.

• The first one is the h-method, which generates the meshes by element size refinement, see
[7]. This method adds extra points to an existing mesh where they are necessary and removes
them when they are no longer needed for improving local grid resolution. In general, we add
many points in the region of large variation and remove some points in the smooth area.

• The second technique, p-method, enhances the order of the polynomial approximation inside
some elements, see [8]. This method employs higher-order numerical schemes to improve
the local accuracy. The combination of the h-method and p-method is called hp-method,
see [8–10].

• The third approach, r-method, see [11–13], also called moving mesh method, maintains the
existing number of grid points globally. The grid points are moved from the smooth areas
to the non-smooth regions based on the same grid-redistribution principles. The goal is to
concentrate the grid points in the region of large variation.

In this paper, we shall present the r-method, known as the moving mesh method for solving
Boussinesq equation. The present moving mesh algorithm is an extension of Tang and Tang
[12] for solving hyperbolic conservation laws and Zhang and Tang [13] for solving convection-
dominated equations. Another main motivation of this work is to study the simulation results
of the moving mesh method based on different types of numerical fluxes, with the objective of
obtaining better solution by choosing suitable numerical fluxes. In Sections 2–4, we review and
describe the strategies of our moving mesh methods. The different types of numerical fluxes under
consideration are presented in Section 3. The numerical results are shown in Section 5. Some
concluding remarks are made in Section 6.

2. MOVING MESH METHOD

First, let �p be the physical domain and �c be the computational domain. A moving mesh may
be generated through a bijective map from the computational domain to the physical domain.
One useful mapping uses the so-called equidistribution principle, first introduced by de Boor [14].
It involves selecting mesh points such that the measure of the solution error is equalized over each
subinterval.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:1161–1178
DOI: 10.1002/fld



MOVING MESH METHODS FOR BOUSSINESQ EQUATION 1163

One important concept of the moving mesh methods is the monitor function. The basic idea of
using the monitor function is to require that the density of mesh is proportional to the value of
monitor function, see [12, 13].

2.1. One-dimensional case

In 1D, let x and � denote the physical and computational coordinates, respectively, which are
(without loss of generality) assumed to be in [a,b] and [0,1], respectively. A one-to-one coordinate
transformation between these domains is denoted by

x= x(�), �∈[0,1], x(0)=a, x(1)=b

We assume that moving mesh {x j } and uniform mesh {� j } are given by

a= x0<x1< · · ·<xN =b, � j = j

N
, 0� j�N

We describe the mesh redistribution at each time step. The mesh generation equation is based
on the de Boor’s equidistribution principle [14] and written as follows:

(wx�)� =0 (1)

where the function w is called monitor function which in general depends on the underlying
solution and is an indicator of the degree of singularity. The idea of equidistribution principle is to
choose a mesh such that a geometric measure of a function is distributed equally between adjacent
nodes. As the product of wx� is a constant, when value of w increases, the value of x� decreases;
therefore, resulting in mesh clustering. That is, the value of monitor function is proportional to the
density of mesh.

2.2. Two-dimensional case

In 2D, let (x, y) and (�,�) denote the physical and computational coordinates, respectively, which
are (without loss of generality) assumed to be in [a,b]×[c,d] and [0,1]×[0,1], respectively. A
one-to-one coordinate transformation between these domains is denoted by

(x, y)=(x(�,�), y(�,�)), (�,�)∈[0,1]×[0,1]
x(0,�)=a, x(1,�)=b, y(�,0)=c, y(�,1)=d

We assume that the moving mesh {(x j,k, y j,k)} is given by

a= x0,k<x1,k< · · ·<xN ,k =b, k=0,1, . . . ,N

c= y j,0<y j,1< · · ·<y j,N =d, j =0,1, . . . ,N

and uniform mesh {(� j,k,� j,k)} is given by

(� j,k,� j,k)=
(

j

N
,
k

N

)
, j,k=0,1, . . . ,N
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One of the most important issues is how to choose satisfactory mesh map (x, y). In the two-
dimensional case, the mesh map can be written as the minimizer of a functional of the following
form:

E(�,�)= 1

2

∫
�p

(∇�TG−1
1 ∇�+∇�TG−1

2 ∇�)dx dy (2)

where G1 and G2 are given symmetric positive definite matrices called monitor functions.
The moving mesh is determined by the Euler–Lagrange equations associated with minimizing

the functional E(�,�) in (2):

∇ ·(G−1
1 ∇�)=0, ∇ ·(G−1

2 ∇�)=0 (3)

One of the simplest choices of the monitor function is G1=G2=w I , where I is the identity

matrix and w>0 is a scalar weight function, for example, w=
√
1+u2x +u2y . In this case, from (3),

we obtain Winslow’s variable diffusion method [15]:

∇ ·
(
1

w
∇�

)
=0, ∇ ·

(
1

w
∇�

)
=0 (4)

Via using the above equations, a map between the physical domain �p and computational domain
�c can be computed. Typically, the map transforms a uniform mesh in the computational domain to
cluster grid points in the regions of the physical domain where the solution has the large gradients.

In the two-dimensional case, Ceniceros and Hou’s mesh generator is defined as in [16]:

(wx�)�+(wx�)� =0, (wy�)�+(wy�)� =0 (5)

which will be frequently used in our work.

2.3. Monitor function

In this section, we will discuss some properties of the monitor function. Monitor function plays
a key role in the adaptive mesh methods. A suitable choice of the monitor function generates an
adaptive mesh with desirable grid qualities.

Monitor functions are problem dependent, which depend not only on mesh but also on the
underlying solution and its derivatives. Using the equidistributing principle, the monitor function
can be arc-length or curvature dependent. The conventional form is w=√1+�|u|2+�|∇u|2, where
� and � are some non-negative constants. For example, if we take �=�=0, then a uniform grid is
produced. If we take �=0 and �=1, the effect of the gradient is well re-presented. For example,
we can take w=√1+�|u|2 with �>0 for blow-up problem, and take w=√1+�|∇u|2 with �>0
for Burger’s equation. The scaling constants � and � in the monitor function play a very important
role in mesh adaption. Too small � and � have little effect for mesh adaptivity, while too large
� and � cause too much mesh deformation. The optimal choice of the scaling constant requires
further study.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:1161–1178
DOI: 10.1002/fld
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3. PDE EVOLUTION

3.1. One-dimensional case

Although the main objective of this work is to provide an effective moving mesh algorithm for
two-dimensional singular problems, it is necessary to illustrate the basic ideas by starting with
one-dimensional problems. The main purpose of this section is to discuss some basic techniques
for solving PDEs

ut = f (u)x (6)

In this equation, u is a function of x and t . The notation ut denotes �u/�t . Equation (6) governs
the solution u at time t and position x in a one-dimensional body. We write u at point x . Thus, u
is a real-valued function of two real variables.

Our moving mesh method is formed by two independent parts: PDE evolution and mesh redistri-
bution. The most important problem is how to compute approximate values of f (u)x on a moving
mesh. Of course, f (u)x = f (u)� ·�x . In the general case, the expression of f (u j+1/2)� is given by
( f j+1− f j )/(� j+1−� j ), this is a second-order approximation. Moreover, some oscillations appear
in calculation. We replace f j by f̄ j which is not equal to f j but is an approximation to this value.
Let us consider the expression:

f (u j+1/2)� = f̄ j+1− f̄ j
� j+1−� j

where f̄ j =h(u−
j ,u+

j ) (7)

with the values u−
j and u+

j obtained by high-order polynomial interpolation approximation to the

solution u j at all interfaces, see [12, 13, 17–20]. Several choices of (u−
j ,u+

j ) are discussed as
follows. The function h is a monotone flux, which satisfies:

• h(a,b) is a Lipschitz continuous function in both arguments;
• h(a,b) is a non-decreasing function in a and a non-increasing function in b, symbolically

denoting h(↑,↓);
• h(a,b) is consistent with the physical flux f , that is, h(a,a)= f (a).

Examples of monotone fluxes include:

1. Godunov flux:

h(a,b)=

⎧⎪⎨⎪⎩
min

a�u�b
f (u) if a�b

max
b�u�a

f (u) if a>b

2. Engquist-Osher flux:

h(a,b)=
∫ a

0
max( f ′(u),0)du+

∫ b

0
min( f ′(u),0)du+ f (0)

3. Lax-Friedrichs flux:

h(a,b)= 1
2 [ f (a)+ f (b)−�·(b−a)]
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1166 L. WAN-LUNG AND Z. TAN

where �=maxu | f ′(u)|. The maximum is taken over the relevant range of u. However, for
simplicity, we set �= 1

2 ( f
′(a)+ f ′(b)).

In (7), there are several choices of u−
j and u+

j . Below we list four possible types for u−
j and u+

j .
Type I (see [12, 13], in case of uniform gird):

u−
j =u j−1/2+ 1

2s j−1/2, u+
j =u j−1/2− 1

2 s j+1/2 (8)

where s j+1/2 is an approximation of the slope ux at x j+1/2, defined by

s j+1/2=(sign(s+
j+1/2)+sign(s−

j+1/2))
|s+

j+1/2 ·s−
j+1/2|

|s+
j+1/2|+|s−

j+1/2|+ε

Here ε>0 is introduced to avoid the denominator to become zero. We use ε=10−20, and take

s+
j+1/2=u j+3/2−u j+1/2, s−

j+1/2=u j+1/2−u j−1/2

Type II (see [19–21]):
WENO type for(u−

j ,u+
j ) (9)

Type III (see [18]):

u−
j = u j−1/2+ 1

2

(
sign(u j+1/2−u j−1/2)+sign(u j−1/2−u j−3/2)

2

)
×min{|u j+1/2−u j−1/2|, |u j−1/2−u j−3/2|}

u+
j = u j+1/2− 1

2

(
sign(u j+3/2−u j+1/2)+sign(u j+1/2−u j−1/2)

2

)
×min{|u j+3/2−u j+1/2|, |u j+1/2−u j−1/2|}

(10)

Type IV (see [17]):
u−
j = u j−1/2+ 1

2 [sign(u j+1/2−u j−1/2)

×max{0,min{|u j+1/2−u j−1/2|, (u j−1/2−u j−3/2) ·sign(u j+1/2−u j−1/2)}}]
u+
j = u j+1/2− 1

2 [sign(u j+3/2−u j+1/2)

×max{0,min{|u j+3/2−u j+1/2|, (u j+1/2−u j−1/2) ·sign(u j+3/2−u j+1/2)}}]

(11)

Various types of u−
j and u+

j will be tested to improve the accuracy of the conservative interpolation.

3.2. Two-dimensional case

Assume that the underlying 2D PDE is of form:

ut + f (x, y, t,u,ux ,uy)=0 (12)

with u satisfying u(x, y,0)=u0(x, y) and appropriate boundary conditions, (x, y)∈�p, (�,�)∈�c.
In some computations, it is necessary to map the function u(x, y) in the physical domain onto
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MOVING MESH METHODS FOR BOUSSINESQ EQUATION 1167

function u(�,�) in the computational domain. We shall use the following transformation formulas,
see [12, 13],

ux = u�y�−u�y�
J

= 1

J
[(y�u)�−(y�u)�], uy = x�u�−x�u�

J
= 1

J
[(x�u)�−(y�u)�] (13)

where J = x�y�−x�y� is the Jacobian of the coordinate transformation. Note that the value of J
is always non-zero as proved by Clement et al. [22].

For solving problems with large gradients, the main difficulty is how to calculate the first
derivatives ux and uy . The use of central differences may result in some oscillations. To reduce the
oscillations, following [12], we use the following approximations for ux and uy to approximate
the formulas in (13). Below we extend the formulas (8)–(11) into 2D. By (13), we have

(ux ) j+1/2,k+1/2= ((y�u)�) j+1/2,k+1/2−((y�u)�) j+1/2,k+1/2

((y�x)�) j+1/2,k+1/2−((y�x)�) j+1/2,k+1/2
(14)

The term ((y�u)�) j+1/2,k+1/2 is discretized by

((y�u)�) j+1/2,k+1/2 = (y� · ū�) j+1,k+1/2−(y� · ū�) j,k+1/2

��

= (y j+1,k+1− y j+1,k) · ū�
j+1,k+1/2−(y j,k+1− y j,k) · ū�

j,k+1/2

�� ·��
(15)

where ū�
j,k+1/2 is an approximation to u j,k+1/2, given by

ū�
j,k+1/2=�· ū�−

j,k+1/2+(1−�) · ū�+
j,k+1/2, �∈[0,1] (16)

Here, ū�−
j,k+1/2 and ū�+

j,k+1/2 are the approximations to u j,k+1/2, obtained by the formulas (8)–(11)
in the �-axis. In our computations, we always set �=0.5. Similarly, the term ((y�u)�) j+1/2,k+1/2
is approximated by

((y�u)�) j+1/2,k+1/2= (y j+1,k+1− y j,k+1) · ū�
j+1/2,k+1−(y j+1,k− y j,k) · ū�

j+1/2,k

�� ·��
(17)

where ū�
j+1/2,k is an approximation to u j+1/2,k , given by

ū�
j+1/2,k =� · ū�−

j+1/2,k+(1−�) · ū�+
j+1/2,k, �∈[0,1] (18)

Here, �=0.5. ū�−
j+1/2,k and ū�+

j+1/2,k are also the approximations to u j+1/2,k , obtained by the
formulas (8)–(11) in the �-axis. For calculating (uy) j+1/2,k+1/2, we use

(uy) j+1/2,k+1/2= ((x�u)�) j+1/2,k+1/2−((x�u)�) j+1/2,k+1/2

((x�y)�) j+1/2,k+1/2−((x�y)�) j+1/2,k+1/2
(19)

The terms ((x�u)�) j+1/2,k+1/2 and ((x�u)�) j+1/2,k+1/2 are approximated by

((x�u)�) j+1/2,k+1/2= (x j+1,k+1−x j,k+1) · ū�
j+1/2,k+1−(x j+1,k−x j,k) · ū�

j+1/2,k

��·��
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1168 L. WAN-LUNG AND Z. TAN

((x�u)�) j+1/2,k+1/2= (x j+1,k+1−x j+1,k) · ū�
j+1,k+1/2−(x j,k+1−x j,k) · ū�

j,k+1/2

��·��

where ū�
j+1/2,k and ū�

j,k+1/2 are defined by (18) and (16), respectively.

4. MESH REDISTRIBUTION

Recall that our moving mesh method is formed by two independent parts: PDE evolution and mesh
redistribution. We illustrated PDE evolution part in the previous section. We consider the mesh
redistribution part in this section.

In the following, we shall explore some existing ideas for mesh redistribution in 1D, in order
to obtain a good understanding of mesh-renewing and solution updating. We then extend the 1D
mesh redistribution to 2D.

4.1. Moving mesh in 1D

In [12], a second-order conservative interpolation formula is introduced. This interpolation formula
does not increase the total variation, and as a result the resulting adaptive mesh solutions satisfy
several fundamental properties of the hyperbolic conservative laws.

Let {x j } be old mesh, {u j+1/2} be old solution, {x̃ j } be new mesh and {ũ j+1/2} be new solution.
We assume that x j and u j+1/2 are available for j<0 and j>N , if needed.

For ease of discussion, we set monitor function as

w j+1/2=
√
1+�·(u2�) j+1/2

where � is a positive constant. In the equidistribution principle (1), the mesh equation can be
approximated by

(wx�) j+1/2−(wx�) j−1/2

��
= 0

⇒w j+1/2 ·x j+1+w j−1/2 ·x j−1 = (w j+1/2+w j−1/2) ·x j
(20)

The above approximation is of second-order accuracy. Using (20), a new mesh x̃ j can be obtained
by iterative method, such as Jacobi, Gauss–Seidel and Successive Over Relaxation. In this paper,
we will use the Jacobi iteration since Jacobi iteration produces symmetric mesh even the monitor
function variation is large. In our computational experience, Jacobi iteration is better than other
iterations for solving blow-up problems or mesh-symmetric problems. In practice, only a few
iterations (say 3–5) are required at each time level; hence, the cost for generating new mesh is not
too expensive.

In the following we shall discuss how to update the solution u. For a given time, a mesh x is
updated to a new mesh x̃ . After each update of mesh, we need to pass the solution information from
the old mesh to the newly obtained mesh. Hence, it is necessary to design an algorithm for updating
new solution ũ from x , u and x̃ . To begin with, we assume that the difference between x̃ j+1/2 and
x j+1/2 is small. Let ũ j+1/2 and u j+1/2 be cell averages of solution u(x) over interval [x̃ j , x̃ j+1]
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and [x j , x j+1], respectively, and let c j = x j − x̃ j ,�x j+1/2= x j+1−x j and �x̃ j+1/2= x̃ j+1− x̃ j , we
have as in [12]

∫ x̃ j+1

x̃ j
u(x̃)dx̃=

∫ x j+1

x j
u(x)dx−[(cu) j+1−(cu) j ] (21)

By (21), we obtain

ũ j+1/2= 1

�x̃ j+1/2
[�x j+1/2 ·u j+1/2−((cu) j+1−(cu) j )] (22)

where (cu) j is equal to c j ·u(x j ). Note that the above solution-updating method (22) satisfies the
following mass-conservation:∑

j
�x̃ j+1/2ũ j+1/2=∑

j
�x j+1/2u j+1/2 (23)

However, if we use the linear approximation for (cu) j in (22), the formula becomes first-order
accuracy. It is necessary to use a second-order accurate numerical flux (ĉu) j to replace (cu) j
in (22). We approximate the flux (ĉu) j by an up-winding scheme:

ĉu j =
⎧⎨⎩c j ·u−

j if c j�0

c j ·u+
j if c j<0

(24)

where (u+
j ,u−

j ) is given by (8)–(11). In this case, we use (8).

4.2. Moving mesh in 2D

In this section, we focus on the 2D moving mesh generation. It should be pointed out that the
extension of the 1D equidistributing principle to 2D is not straightforward. In addition to adaptation
and smoothness, other mesh properties such as skewness and orthorgonality have to be incorporated
in the 2D formulation, see [12].

Let {x j,k} be the old mesh and {x̃ j,k} be the new mesh in the x-coordinate, {y j,k} be the old
mesh and {ỹ j,k} be the new mesh in the y-coordinate, and {u j+1/2,k+1/2} be the old solution and
{ũ j+1/2,k+1/2} be the new solution, respectively. Recall the equidistribution principle (5):

(wx�)�+(wx�)� =0, (wy�)�+(wy�)� =0 (25)

In our case, ��=��, the first term in (25) is then approximated by

(wx�) j+1/2,k−(wx�) j−1/2,k

��
+ (wx�) j,k+1/2−(wx�) j,k−1/2

��
=0
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1170 L. WAN-LUNG AND Z. TAN

which gives

w j+1/2,k ·
(
x j+1,k−x j,k

��

)
−w j−1/2,k ·

(
x j,k−x j−1,k

��

)

+w j,k+1/2 ·
(
x j,k+1−x j,k

��

)
−w j,k−1/2 ·

(
x j,k−x j,k−1

��

)
=0

It follows from the above equation that

x j,k = w j+1/2,k x j+1,k+w j−1/2,k x j−1,k+w j,k+1/2x j,k+1+w j,k−1/2x j,k−1

w j+1/2,k+w j−1/2,k+w j,k+1/2+w j,k−1/2

Similar approximation is used for the second equation in (25) to obtain y j,k . New mesh is obtained
by Jacobi formulas, and Jacobi iteration produces symmetric mesh.

Let A j+1/2,k+1/2 denote area of the quadrangle of the control volume with four vertices
(x j+1,k+1, y j+1,k+1), (x j,k+1, y j,k+1), (x j,k, y j,k) and (x j,k+1, y j,k+1). Denoting cx = x− x̃ ,
cy = y− ỹ, then we have (see [12])∫

Ã j+1/2,k+1/2

u(x̃, ỹ)dx̃ dỹ ≈
∫
A j+1/2,k+1/2

u(x, y)dx dy−[(cnu) j+1,k+1/2−(cnu) j,k+1/2]

−[(cnu) j+1/2,k+1−(cnu) j+1/2,k] (26)

where cn =cxnx +cyny with the normal (nx ,ny). Here (cnu) j+1,k+1/2 and (cnu) j+1/2,k+1 denote
the values of cnu at the corresponding surface of the control volume A j+1/2,k+1/2. We discretize
the normal (nx ,ny) as follows:(

nx

ny

)
j+1,k+1/2

=
(

y j+1,k+1− y j+1,k

−(x j+1,k+1−x j+1,k)

)
(
nx

ny

)
j+1/2,k+1

=
(−(y j+1,k+1− y j,k+1)

x j+1,k+1−x j,k+1

)

From (26), we obtain a conservative-interpolation, see [12], written as

| Ã j+1/2,k+1/2|· ũ j+1/2,k+1/2 = |A j+1/2,k+1/2|·u j+1/2,k+1/2−[(cnu) j+1,k+1/2−(cnu) j,k+1/2]
−[(cnu) j+1/2,k+1−(cnu) j+1/2,k] (27)

where | Ã| and |A| denote the areas of the control volumes Ã and A, respectively. It can be verified
that the above solution-updating scheme (27) satisfies the following mass-conservation:∑

j,k
| Ã j+1/2,k+1/2|· ũ j+1/2,k+1/2=∑

j,k
|A j+1/2,k+1/2|·u j+1/2,k+1/2 (28)

However, if we use the general terms (cnu) j,k+1/2 and (cnu) j+1/2,k in (27), the formula becomes
first-order accurate. It is necessary to use second-order accurate numerical fluxes Flux j,k+1/2
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and Fluy j+1/2,k to replace (cnu) j,k+1/2 and (cnu) j+1/2,k in (27), respectively. The formula (27)
becomes

ũ j+1/2,k+1/2 = 1

Ã
[u j+1/2,k+1/2 ·A−(Flux j+1,k+1/2−Flux j,k+1/2)

−(Fluy j+1/2,k+1−Fluy j+1/2,k)] (29)

where

A= 1
2 [(x j,k−x j+1,k+1)(y j+1,k− y j,k+1)−(y j,k− y j+1,k+1)(x j+1,k−x j,k+1)]

Ã= 1
2 [(x̃ j,k− x̃ j+1,k+1)(ỹ j+1,k− ỹ j,k+1)−(ỹ j,k− ỹ j+1,k+1)(x̃ j+1,k− x̃ j,k+1)]

The numerical flux (Flux j,k+1/2) is defined by

Flux j,k+1/2=
⎧⎨⎩(cn) j,k+1/2 · ū�−

j,k+1/2 if (cn) j,k+1/2�0

(cn) j,k+1/2 · ū�+
j,k+1/2 if (cn) j,k+1/2<0

(30)

where ū�−
j,k+1/2 and ū�+

j,k+1/2 are defined by (8)–(11) in the �-axis. In this case, we use (8).
The numerical flux (Fluy j+1/2,k) is defined by

Fluy j+1/2,k =
⎧⎨⎩(cn) j+1/2,k · ū�−

j+1/2,k if (cn) j+1/2,k�0

(cn) j+1/2,k · ū�+
j+1/2,k if (cn) j+1/2,k<0

(31)

where ū�−
j+1/2,k and ū�+

j+1/2,k are defined by (8)–(11) in �-axis. In this case, we use (8).
The formulas (29)–(31) are used with the following formulas:

(cn) j,k+1/2=(cxj,k+1/2 ·(y j,k+1− y j,k)−cyj,k+1/2 ·(x j,k+1−x j,k))

(cn) j+1/2,k =(−cxj+1/2,k ·(y j+1,k− y j,k)+cyj+1/2,k ·(x j+1,k−x j,k))

5. NUMERICAL EXAMPLE: THE BOUSSINESQ EQUATION

In this section, we mainly investigate the use of the moving mesh approach to solve the Boussinesq
equation. The moving mesh method can be useful in resolving extremely small structures with
reasonably small number of grid points. For detailed discussions, see [13, 16].

There are several reasons for the study of the two-dimensional Boussinesq equation. It is a simple
model to address the open problem about whether finite time singularity occurs for initially smooth
flows in inviscid and incompressible three-dimensional Euler flows. The inviscid two-dimensional
Boussinesq equation can be used as a model for the three-dimensional axis-symmetric Euler
equation with swirl. The understanding of finite time singularities may be crucial to explain small-
scale structures in viscous turbulent flows. The Boussinesq equation has also potential relevance
to the study of atmospheric and oceanography turbulence, as well as other astrophysical situations
where rotation and stratification play a dominant role.
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The Boussinesq equation is:

Wt +�y ·Wx −�x ·Wy = −ḡ ·�x
�t +�y ·�x −�x ·�y = 0

�xx +�yy = −W

(32)

where � is temperature, W is vorticity and � is the stream function. Without loss of generality,
we take the scaled gravity constant ḡ as 10.

We setW (x, y,0)=0, �(x, y,0)=0 and �(x, y,0) as a stratified fluid with three constant regions
�1, �2 and �̄=(�1+�2)/2 connected by two thin layers in the following form:

�(x, y,0)=
{

�2+(�̄−�2) ·H�(0.5+ ys(x)− y) if y�0.5

�1+(�̄−�1) ·H�(y− ys(x)−0.5) if y<0.5
(33)

where

ys(x)=�+ε ·(1+sin(2	(x+0.75))) (34)

and H�(x) is the mollified Heaviside function:

H�(x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x<−�

x+�

2�
+ 1

2	
sin
(	x

�

)
if |x |��

1 if x>�

(35)

Here, we take �1=−1, �2=1 and �̄=0. By setting �=0.04 and ε=0.025, we obtain two thin
symmetric layers separating smoothly the three constant values of �.

For solving Poisson equation �xx +�yy =−W , we use multigrid preconditional conjugate
gradient (MGCG) method [23, 24] to get the approximate solution �. The distinguishing feature
of the multigrid (MG) method is that a number of different grids are used on the domain, ranging
from coarse to fine. A numerical solution on a coarse grid can be computed quickly, but it has low
accuracy. The MG method has inherent high parallelism and improves convergence of long wave
length components, which is important in iterative methods. By using this method as a precondi-
tioner in the preconditional conjugate gradient method, an efficient method with high parallelism
and fast convergence is obtained. The MG method uses matrix-dependent prolongation [25]. The
MG solver is given by P. M. De Zeeuw [25], called �mgd9v.f�. For using this MG solver, it is
necessary to set the number of grid points as N =2m+1, where m is an integer.

A channel geometry is assumed. In this case, the flow is bounded by horizontal walls on the
top and bottom of the layer. It is assumed to be periodic in the horizontal direction. As the flow
is periodic in the horizontal direction, we impose x(�,�)−� and y(�,�) to be periodic in �. The
stream function � is subjected to the Dirichlet boundary condition (�=0) on the top and bottom
of the computational domain and the period boundary conditions in the horizontal direction. We
construct an efficient solver for solving the transformed stream function � by MGCG method.
Our stopping criterion for the MGCG method is a tolerance of 10−10 and for the MG method
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Table I. Outline of the numerical algorithm for solving the Boussinesq equation.

0. Determine the initial mesh based on the initial function.
1. Determine �t based on CFL-type condition so that t(n+1) = t(n)+�t .
2. Mesh Redistribution.

(a) Solve the mesh-redistributing equation by one Jacobi iteration, to get (x̃(n), ỹ(n)).

(b) Interpolate the approximate solutions �̃
(n)

, W̃ (n) on the new mesh (x̃(n), ỹ(n)).
(c) Make the iteration procedure (a)-(b) on mesh-motion and solution-interpolation

until there is no significant change in calculated new mesh from one iteration to
the next.

3. Advance the solution one time step based on an appropriate numerical scheme.

(a) Compute �(n) using MGCG iteration method.
(b) Compute �(n+1) and W (n+1) by RK2.

4. Start new time step (go to 2 above).

is a tolerance of 10−10. The alternating solution time-marching procedure is applied using the
second-order Runge–Kutta method. In this work, we use 2 ghost points.

For this example, we take the monitor function w=
√
1+�(�2�+�2�) with �=0.1. In adaptive

mesh method, �t is not fixed in the computations, which is determined by the minimum distance
in the mesh. Hence, we set �t=
·min(x j+1,k−x j,k, y j,k+1− y j,k), where 
 is the CFL constant.
In our computation, we take 
=0.3.

A flow chart for our numerical algorithm is given in Table I.
We now present the numerical results for the layered Boussinesq inviscid fluid with zero initial

vorticity and temperature given by (33)–(35). We take N =257, that is, use a 257×257 grid in
the computational domain of [0,1]×[0,1]. The flow has four-fold symmetry. In the four small
symmetric regions, the vorticity alternates signs in the pattern of (++/−−) and (+−/−+). In
the mesh redistribution part, we use the formula (29) with (u−

j ,u+
j ) given by (8). This is because

the computational cost of WENO scheme (9) is larger than other formulas like (8), (10) and (11)
but their numerical results are the same. As a result we choose (8). Moreover, in the PDE evolution
part, we use formulas (14)–(19) to solve �x , �y , Wx , Wy , �x and �y .

In Figure 1, we show the close-up of the adaptive meshes at T =0.7 and 0.8 in [0.3,0.5]×
[0.5,0.7] and [0.3,0.5]×[0.6,0.8]. As expected, many grid points are moved to the regions of
large variations in the temperature. Figure 2 shows the mesh compression ratio (uniform grid size
to smallest adaptive grid size). It is clearly seen that the ratios of maximum to minimum of the
grid size in the x and y directions change differently with time. In particular at T =0.85, we obtain
a compression ratio close to 9, giving an effective resolution corresponding to that of an uniform
mesh with 22502 grid points.

Figure 3 shows the maximum value of � and the maximum value of W . It can be shown that
the maximum and minimum values of � are 1 and −1, respectively. The maximum values of �
in our computation are always smaller than 1.001 as in Figure 3 (left). This partly indicates that
our numerical solution is reliable. It can also be observed from this figure that when the time
is evolving close to t=0.7, some oscillations appear in the temperature. However, the maximum
leakage of these oscillations is small and below 9×10−4.

We have employed the WENO-type numerical flux (9) to solve Boussinesq equation. Figures 4
and 5 present the contours of � and W for T =0.7 and 0.8 with this type flux, respectively. To

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:1161–1178
DOI: 10.1002/fld



1174 L. WAN-LUNG AND Z. TAN

Figure 1. Close-ups of the adaptive meshes in [0.3,0.5]×[0.5,0.7] and [0.3,0.5]×[0.6,0.8] at T =0.7
(left) and T =0.8 (right), respectively.

0 0.1 0.2 0.3

time

0.4 0.5 0.6 0.7 0.8
1

2

3

4

5

6

7

8

9

Figure 2. The mesh compression ratio (the ratio of the uniform grid size and the smallest
adaptive grid size) for 0�T�0.85.

test for accuracy, the results of Figures 4 and 5 are compared with those fluxes of Ceniceros and
Hou [16]. We can see their good agreement. We also tried other numerical fluxes, but some of
them did not give satisfactory results. For example, if we use the numerical flux (8) to solve this
problem, then results are incorrect. Figure 5 shows the contours of numerical results by using the
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Figure 3. The maximum of temperature �max (left) and the maximum of vorticity
Wmax (right) for 0�T�0.85.
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Figure 4. Temperature and vorticity contours at T =0.7. In PDE evolution part, (u−
j ,u+

j ) is given by (9).

WENO flux for (u−
j ,u+

j ). The plots of the contours of numerical results by using the numerical flux

(u−
j ,u+

j ) in (8) are shown in Figure 6. Both figures present the contours of � and W for T =0.8.
In these plots, 20 equally spaced contour lines are used. The numerical results of Figure 6 are
formed inaccurate. The numerical results clearly show that the WENO-[19] type finite difference
is a better choice for handing this problem. The mesh resolution is insufficient after T>0.85. In
PDE evolution part, if (u−

j ,u+
j ) is used by (10) or (11), both solutions are similar to those using

(u−
j ,u+

j ) given by (8). Again the figures demonstrate that the WENO-[19] type finite difference is
a better choice for handing this problem by comparison. As a result, the numerical results indicate
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Figure 5. Temperature and vorticity contours at T =0.8. In PDE evolution part, (u−
j ,u+

j ) is given by (9).
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Figure 6. Temperature and vorticity contours at T =0.8. In PDE evolution part, (u−
j ,u+

j ) is given by (8).

that the WENO-type numerical flux (9) is better than other numerical fluxes presented in (8), (10)
and (11) for solving the Boussinesq equation (32).

6. CONCLUSION

In this paper, the moving mesh methods are studied and applied to solve some two-dimensional
PDEs with singularities involving solutions. We have considered some basic techniques for solving
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PDEs and compared several numerical fluxes on the Boussinesq equation investigated in [16]. The
underlying PDEs are mapped onto computational domain via coordinate transformation, and then
the transformed PDEs are solved by the WENO scheme [19]. One of the main contributions of the
current work is to use the WENO-type numerical flux (9) to replace other numerical fluxes (8), (10)
and (11) for solving the Boussinesq equation. Our numerical tests indicate that the WENO-type
numerical flux is better than the others. In the present method, the MGCG method is employed to
solve the Poisson equation. The mesh redistribution and solution updating are also investigated.
Our moving mesh algorithms are formed by two independent parts: PDE evolution and mesh-
redistribution. In our numerical schemes, the PDE evolution part and the mesh-redistribution part
are approximated with second-order accuracy. Computational costs of moving mesh methods can
be efficiently saved with locally varying time steps [26]. It seems that the existing moving mesh
methods are limited to the second-order accuracy. It will be useful to design the higher-order
moving mesh schemes, which will be our future work.
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